Skip to main content

APE Framework Usage Guide

Overviewโ€‹

The Automatic Prompt Engineer (APE) framework provides intelligent prompt optimization capabilities for MCP ADR Analysis Server tools. This guide demonstrates how to integrate APE optimization into tools and configure optimization parameters.

Quick Startโ€‹

Basic APE Optimizationโ€‹

import { optimizePromptWithAPE } from '../utils/ape-framework.js';

// Optimize a prompt for better performance
const optimizationResult = await optimizePromptWithAPE(
originalPrompt,
{
candidateCount: 5,
evaluationCriteria: ['task-completion', 'clarity', 'specificity'],
optimizationRounds: 2,
selectionStrategy: 'multi-criteria'
}
);

// Use the optimized prompt
const enhancedPrompt = optimizationResult.optimizedPrompt;

Tool Integration Exampleโ€‹

// Example: APE-enhanced ADR suggestion tool
export async function generateOptimizedAdrSuggestions(context: any) {
// Step 1: Create base prompt
const basePrompt = createAdrSuggestionPrompt(context);

// Step 2: Apply APE optimization
const apeResult = await optimizePromptWithAPE(
basePrompt,
{
candidateCount: 7,
evaluationCriteria: ['task-completion', 'specificity', 'clarity', 'robustness'],
optimizationRounds: 3,
selectionStrategy: 'multi-criteria',
cacheEnabled: true
}
);

// Step 3: Return optimized prompt for AI execution
return {
content: [{
type: 'text',
text: apeResult.optimizedPrompt.prompt
}],
metadata: {
apeOptimization: {
improvementScore: apeResult.improvementScore,
candidatesEvaluated: apeResult.candidatesEvaluated,
optimizationTime: apeResult.totalOptimizationTime
}
}
};
}

Configuration Optionsโ€‹

APE Configurationโ€‹

interface APEConfig {
candidateCount: number; // Number of candidates to generate (1-20)
evaluationCriteria: EvaluationCriterion[];
optimizationRounds: number; // Number of optimization iterations (1-10)
selectionStrategy: SelectionStrategy;
cacheEnabled: boolean;
performanceTracking: boolean;
maxOptimizationTime: number; // Maximum time in milliseconds
qualityThreshold: number; // Minimum quality score (0-1)
diversityWeight: number; // Weight for candidate diversity (0-1)
}

Evaluation Criteria Optionsโ€‹

type EvaluationCriterion =
| 'task-completion' // How well the prompt achieves the intended task
| 'clarity' // How clear and unambiguous the prompt is
| 'specificity' // How specific and actionable the prompt is
| 'robustness' // How well the prompt handles edge cases
| 'efficiency' // How concise yet comprehensive the prompt is
| 'context-awareness'; // How well the prompt fits the specific context

Selection Strategy Optionsโ€‹

type SelectionStrategy =
| 'highest-score' // Select candidate with highest overall score
| 'multi-criteria' // Balance multiple evaluation criteria
| 'ensemble' // Combine strengths of multiple candidates
| 'context-aware' // Choose based on context-specific suitability
| 'balanced'; // Balance quality and diversity

Tool-Specific Configurationsโ€‹

ADR Generation Toolsโ€‹

const adrOptimizationConfig: APEConfig = {
candidateCount: 7,
evaluationCriteria: ['task-completion', 'specificity', 'clarity', 'robustness'],
optimizationRounds: 3,
selectionStrategy: 'multi-criteria',
cacheEnabled: true,
performanceTracking: true,
maxOptimizationTime: 180000, // 3 minutes
qualityThreshold: 0.7,
diversityWeight: 0.3
};

Analysis Toolsโ€‹

const analysisOptimizationConfig: APEConfig = {
candidateCount: 5,
evaluationCriteria: ['task-completion', 'clarity', 'context-awareness'],
optimizationRounds: 2,
selectionStrategy: 'context-aware',
cacheEnabled: true,
performanceTracking: true,
maxOptimizationTime: 120000, // 2 minutes
qualityThreshold: 0.6,
diversityWeight: 0.4
};

Research Toolsโ€‹

const researchOptimizationConfig: APEConfig = {
candidateCount: 6,
evaluationCriteria: ['task-completion', 'specificity', 'efficiency'],
optimizationRounds: 2,
selectionStrategy: 'balanced',
cacheEnabled: true,
performanceTracking: true,
maxOptimizationTime: 150000, // 2.5 minutes
qualityThreshold: 0.65,
diversityWeight: 0.35
};

Usage Patternsโ€‹

Pattern 1: Real-time Optimizationโ€‹

// For tools that need immediate optimization
const quickConfig: APEConfig = {
candidateCount: 3,
evaluationCriteria: ['task-completion', 'clarity'],
optimizationRounds: 1,
selectionStrategy: 'highest-score',
cacheEnabled: true,
maxOptimizationTime: 60000 // 1 minute
};

Pattern 2: Comprehensive Optimizationโ€‹

// For tools where quality is more important than speed
const comprehensiveConfig: APEConfig = {
candidateCount: 10,
evaluationCriteria: ['task-completion', 'clarity', 'specificity', 'robustness', 'efficiency'],
optimizationRounds: 5,
selectionStrategy: 'multi-criteria',
cacheEnabled: true,
maxOptimizationTime: 300000 // 5 minutes
};

Pattern 3: Context-Specific Optimizationโ€‹

// For tools that need context-aware optimization
const contextAwareConfig: APEConfig = {
candidateCount: 6,
evaluationCriteria: ['task-completion', 'context-awareness', 'specificity'],
optimizationRounds: 3,
selectionStrategy: 'context-aware',
cacheEnabled: true,
maxOptimizationTime: 180000 // 3 minutes
};

Performance Considerationsโ€‹

Optimization Time vs Quality Trade-offsโ€‹

  • Quick Optimization (1-2 minutes): 3-5 candidates, 1-2 rounds
  • Balanced Optimization (2-3 minutes): 5-7 candidates, 2-3 rounds
  • Comprehensive Optimization (3-5 minutes): 7-10 candidates, 3-5 rounds

Caching Strategyโ€‹

// Enable caching for frequently used prompts
const cachedConfig: APEConfig = {
cacheEnabled: true,
// Cache TTL is automatically managed based on prompt type
// ADR prompts: 24 hours
// Analysis prompts: 6 hours
// Research prompts: 12 hours
};

Resource Managementโ€‹

// Configure resource limits
const resourceOptimizedConfig: APEConfig = {
candidateCount: 5,
maxOptimizationTime: 120000, // 2 minutes max
qualityThreshold: 0.6, // Accept good enough results
diversityWeight: 0.3 // Focus more on quality than diversity
};

Monitoring and Feedbackโ€‹

Performance Trackingโ€‹

// Enable performance tracking to monitor optimization effectiveness
const trackedConfig: APEConfig = {
performanceTracking: true,
// Automatically collects:
// - Optimization time
// - Improvement scores
// - Success rates
// - Resource usage
};

Accessing Optimization Metricsโ€‹

// Get optimization performance metrics
const metrics = await getAPEPerformanceMetrics();
console.log('APE Performance:', {
averageImprovementScore: metrics.averageImprovementScore,
optimizationSuccessRate: metrics.successRate,
averageOptimizationTime: metrics.averageOptimizationTime,
cacheHitRate: metrics.cacheHitRate
});

Error Handling and Fallbacksโ€‹

Graceful Degradationโ€‹

async function optimizePromptSafely(
originalPrompt: PromptObject,
config: APEConfig
): Promise<PromptObject> {
try {
const result = await optimizePromptWithAPE(originalPrompt, config);
return result.optimizedPrompt;
} catch (error) {
console.warn('APE optimization failed, using original prompt:', error);
return originalPrompt; // Fallback to original
}
}

Timeout Handlingโ€‹

const timeoutSafeConfig: APEConfig = {
maxOptimizationTime: 120000, // 2 minutes
qualityThreshold: 0.5, // Lower threshold for timeout scenarios
// If optimization times out, return best candidate found so far
};

Best Practicesโ€‹

1. Configuration Selectionโ€‹

  • High-frequency tools: Use quick optimization with caching
  • Critical tools: Use comprehensive optimization
  • Context-sensitive tools: Use context-aware selection

2. Evaluation Criteria Selectionโ€‹

  • Always include: task-completion (core requirement)
  • For user-facing tools: Add clarity and specificity
  • For complex tasks: Add robustness and efficiency
  • For domain-specific tools: Add context-awareness

3. Performance Optimizationโ€‹

  • Enable caching for repeated optimizations
  • Set appropriate time limits based on tool usage patterns
  • Monitor optimization metrics to tune configurations
  • Use fallback strategies for critical tools

4. Quality Assuranceโ€‹

  • Set quality thresholds based on tool requirements
  • Monitor improvement scores to validate optimization effectiveness
  • Collect user feedback on optimized prompts
  • Regularly review and update optimization configurations

Integration Examplesโ€‹

Example 1: ADR Suggestion Toolโ€‹

export async function suggestAdrsWithAPE(context: any) {
const basePrompt = createAdrSuggestionPrompt(context);

const apeResult = await optimizePromptWithAPE(basePrompt, {
candidateCount: 6,
evaluationCriteria: ['task-completion', 'specificity', 'clarity'],
optimizationRounds: 2,
selectionStrategy: 'multi-criteria',
cacheEnabled: true,
qualityThreshold: 0.7
});

return {
content: [{ type: 'text', text: apeResult.optimizedPrompt.prompt }],
metadata: { apeOptimization: apeResult.metadata }
};
}

Example 2: Research Question Generationโ€‹

export async function generateResearchQuestionsWithAPE(context: any) {
const basePrompt = createResearchQuestionPrompt(context);

const apeResult = await optimizePromptWithAPE(basePrompt, {
candidateCount: 5,
evaluationCriteria: ['task-completion', 'specificity', 'efficiency'],
optimizationRounds: 2,
selectionStrategy: 'balanced',
cacheEnabled: true,
qualityThreshold: 0.65
});

return {
content: [{ type: 'text', text: apeResult.optimizedPrompt.prompt }],
metadata: { apeOptimization: apeResult.metadata }
};
}

This usage guide provides comprehensive guidance for integrating APE optimization into MCP tools while maintaining the 100% prompt-driven architecture and ensuring optimal performance.