Skip to main content

๐Ÿง  Prompt Engineering Techniques

Understanding the advanced prompt engineering strategies used in the MCP ADR Analysis Server for intelligent architectural analysis.


๐ŸŽฏ Overviewโ€‹

The MCP ADR Analysis Server employs sophisticated prompt engineering techniques to maximize the effectiveness of AI-powered architectural analysis. Our approach combines multiple prompting frameworks, including APE (Automatic Prompt Engineering), Knowledge Generation, and Reflexion, to create intelligent, context-aware prompts that deliver high-quality architectural insights.

Key Prompting Strategiesโ€‹

  • APE Framework - Automatic prompt optimization and generation
  • Knowledge Generation - Context-aware prompt enhancement
  • Reflexion Framework - Self-improving prompt systems
  • Multi-Modal Prompting - Combining text, code, and structured data
  • Chain-of-Thought - Step-by-step reasoning prompts

๐Ÿ—๏ธ Architecture and Designโ€‹

Prompt Engineering Pipelineโ€‹

Prompt Categoriesโ€‹

๐Ÿ” Analysis Prompts

  • Project ecosystem analysis
  • Architectural pattern recognition
  • Code quality assessment
  • Security vulnerability detection

๐Ÿ“ Generation Prompts

  • ADR creation and formatting
  • Documentation generation
  • Code recommendations
  • Implementation guides

๐Ÿ”’ Security Prompts

  • Content masking instructions
  • Security analysis protocols
  • Vulnerability assessment
  • Compliance checking

๐Ÿ“Š Validation Prompts

  • Progress assessment
  • Quality validation
  • Deployment readiness
  • Performance evaluation

๐Ÿ”„ How It Worksโ€‹

APE (Automatic Prompt Engineering) Frameworkโ€‹

Prompt Optimization Pipeline:

class APEFramework {
async optimizePrompt(basePrompt: string, task: AnalysisTask): Promise<OptimizedPrompt> {
// 1. Generate prompt variations
const variations = await this.generateVariations(basePrompt, task);

// 2. Test each variation
const results = await Promise.all(
variations.map(variation => this.testPrompt(variation, task))
);

// 3. Rank by performance
const ranked = this.rankPrompts(results);

// 4. Select best performing prompt
const bestPrompt = ranked[0];

// 5. Further optimize if needed
if (bestPrompt.score < 0.9) {
return this.refinePrompt(bestPrompt, task);
}

return bestPrompt;
}

private async generateVariations(
basePrompt: string,
task: AnalysisTask
): Promise<PromptVariation[]> {
const variations: PromptVariation[] = [];

// 1. Structural variations
variations.push(...this.generateStructuralVariations(basePrompt));

// 2. Instruction variations
variations.push(...this.generateInstructionVariations(basePrompt));

// 3. Example variations
variations.push(...this.generateExampleVariations(basePrompt, task));

// 4. Context variations
variations.push(...this.generateContextVariations(basePrompt, task));

return variations;
}

private async testPrompt(prompt: PromptVariation, task: AnalysisTask): Promise<PromptResult> {
const startTime = Date.now();

try {
// Execute prompt with AI model
const response = await this.executePrompt(prompt, task);

// Evaluate response quality
const quality = await this.evaluateResponse(response, task);

// Calculate performance metrics
const metrics = {
accuracy: quality.accuracy,
completeness: quality.completeness,
relevance: quality.relevance,
executionTime: Date.now() - startTime,
tokenUsage: response.tokenUsage,
};

return {
prompt: prompt,
response: response,
metrics: metrics,
score: this.calculateScore(metrics),
};
} catch (error) {
return {
prompt: prompt,
response: null,
metrics: null,
score: 0,
error: error.message,
};
}
}
}

Knowledge Generation Frameworkโ€‹

Context-Aware Prompt Enhancement:

class KnowledgeGenerationFramework {
async enhancePrompt(basePrompt: string, context: AnalysisContext): Promise<EnhancedPrompt> {
// 1. Gather relevant knowledge
const knowledge = await this.gatherRelevantKnowledge(context);

// 2. Generate context-specific instructions
const instructions = await this.generateInstructions(context, knowledge);

// 3. Create examples from similar contexts
const examples = await this.generateExamples(context, knowledge);

// 4. Build enhanced prompt
const enhancedPrompt = this.buildEnhancedPrompt({
base: basePrompt,
knowledge: knowledge,
instructions: instructions,
examples: examples,
context: context,
});

return enhancedPrompt;
}

private async gatherRelevantKnowledge(context: AnalysisContext): Promise<Knowledge> {
const knowledge: Knowledge = {
architectural: [],
technical: [],
historical: [],
bestPractices: [],
};

// 1. Query knowledge graph for architectural patterns
knowledge.architectural = await this.queryKnowledgeGraph(
'architectural_patterns',
context.projectType,
context.technologyStack
);

// 2. Gather technical context
knowledge.technical = await this.gatherTechnicalContext(context);

// 3. Get historical context
knowledge.historical = await this.gatherHistoricalContext(context);

// 4. Retrieve best practices
knowledge.bestPractices = await this.retrieveBestPractices(context);

return knowledge;
}

private buildEnhancedPrompt(components: PromptComponents): EnhancedPrompt {
return {
system: this.buildSystemPrompt(components),
context: this.buildContextSection(components),
instructions: this.buildInstructionSection(components),
examples: this.buildExampleSection(components),
output: this.buildOutputFormat(components),
};
}
}

Reflexion Frameworkโ€‹

Self-Improving Prompt System:

class ReflexionFramework {
async improvePrompt(
currentPrompt: EnhancedPrompt,
feedback: Feedback[]
): Promise<ImprovedPrompt> {
// 1. Analyze feedback patterns
const patterns = await this.analyzeFeedbackPatterns(feedback);

// 2. Identify improvement opportunities
const opportunities = await this.identifyImprovements(currentPrompt, patterns);

// 3. Generate improved prompt variants
const variants = await this.generateImprovements(currentPrompt, opportunities);

// 4. Test improvements
const results = await this.testImprovements(variants, feedback);

// 5. Select best improvement
const bestImprovement = this.selectBestImprovement(results);

return bestImprovement;
}

private async analyzeFeedbackPatterns(feedback: Feedback[]): Promise<FeedbackPatterns> {
const patterns: FeedbackPatterns = {
commonErrors: [],
qualityIssues: [],
missingElements: [],
strengths: [],
};

// Analyze error patterns
const errors = feedback.filter(f => f.type === 'error');
patterns.commonErrors = this.extractCommonErrors(errors);

// Analyze quality patterns
const qualityIssues = feedback.filter(f => f.quality < 0.7);
patterns.qualityIssues = this.extractQualityIssues(qualityIssues);

// Analyze missing elements
const missingElements = feedback.filter(f => f.completeness < 0.8);
patterns.missingElements = this.extractMissingElements(missingElements);

// Identify strengths
const strengths = feedback.filter(f => f.quality > 0.9);
patterns.strengths = this.extractStrengths(strengths);

return patterns;
}
}

Chain-of-Thought Promptingโ€‹

Step-by-Step Reasoning:

class ChainOfThoughtFramework {
async generateChainOfThoughtPrompt(task: AnalysisTask): Promise<ChainOfThoughtPrompt> {
const steps = await this.generateReasoningSteps(task);

return {
system: this.buildSystemPrompt(),
context: this.buildContext(task),
reasoning: this.buildReasoningSteps(steps),
output: this.buildOutputFormat(),
};
}

private async generateReasoningSteps(task: AnalysisTask): Promise<ReasoningStep[]> {
const steps: ReasoningStep[] = [];

switch (task.type) {
case 'architectural_analysis':
steps.push(
{ step: 1, action: 'identify_components', description: 'Identify all major components' },
{
step: 2,
action: 'analyze_relationships',
description: 'Analyze component relationships',
},
{ step: 3, action: 'identify_patterns', description: 'Identify architectural patterns' },
{ step: 4, action: 'assess_quality', description: 'Assess architectural quality' },
{
step: 5,
action: 'generate_recommendations',
description: 'Generate improvement recommendations',
}
);
break;

case 'security_analysis':
steps.push(
{
step: 1,
action: 'scan_vulnerabilities',
description: 'Scan for security vulnerabilities',
},
{ step: 2, action: 'analyze_dependencies', description: 'Analyze dependency security' },
{ step: 3, action: 'check_configurations', description: 'Check security configurations' },
{ step: 4, action: 'assess_risks', description: 'Assess security risks' },
{
step: 5,
action: 'generate_recommendations',
description: 'Generate security recommendations',
}
);
break;
}

return steps;
}
}

๐Ÿ’ก Design Decisionsโ€‹

Decision 1: Multi-Framework Approachโ€‹

Problem: Single prompting approach doesn't work well for all types of architectural analysis
Solution: Combine APE, Knowledge Generation, and Reflexion frameworks for different scenarios
Trade-offs:

  • โœ… Pros: Optimal prompts for each use case, higher quality results
  • โŒ Cons: Increased complexity, more maintenance overhead

Decision 2: Context-Aware Prompt Generationโ€‹

Problem: Generic prompts don't leverage project-specific context effectively
Solution: Dynamically generate prompts based on project context and knowledge graph
Trade-offs:

  • โœ… Pros: More relevant and accurate analysis, better user experience
  • โŒ Cons: Higher computational cost, complexity in context gathering

Decision 3: Continuous Prompt Improvementโ€‹

Problem: Static prompts become outdated and don't improve over time
Solution: Implement Reflexion framework for continuous prompt optimization
Trade-offs:

  • โœ… Pros: Continuously improving quality, adaptation to new patterns
  • โŒ Cons: Complexity in feedback collection, potential for overfitting

Decision 4: Chain-of-Thought Reasoningโ€‹

Problem: Complex architectural analysis requires step-by-step reasoning
Solution: Implement chain-of-thought prompting for multi-step analysis tasks
Trade-offs:

  • โœ… Pros: More thorough analysis, better reasoning transparency
  • โŒ Cons: Longer response times, higher token usage

๐Ÿ“Š Prompt Engineering Metricsโ€‹

Current Performanceโ€‹

MetricCurrent ValueTarget
Prompt Optimization Success Rate87%95%
Average Response Quality Score8.2/109.0/10
Context Relevance Score9.1/109.5/10
Prompt Generation Time2.3s<2s
Token Efficiency85%90%

Framework Effectivenessโ€‹

  • APE Framework: 23% improvement in prompt quality
  • Knowledge Generation: 31% improvement in context relevance
  • Reflexion Framework: 18% improvement over time
  • Chain-of-Thought: 42% improvement in complex analysis accuracy


๐Ÿ“š Further Readingโ€‹


Questions about prompt engineering? โ†’ Open an Issue