๐ง Knowledge Graph Architecture
Understanding how the MCP ADR Analysis Server builds and maintains intelligent knowledge graphs for enhanced architectural analysis.
๐ฏ Overviewโ
The Knowledge Graph system is the intelligent memory and learning component of the MCP ADR Analysis Server. It builds and maintains a dynamic graph of relationships between architectural decisions, code patterns, and project evolution over time, enabling the server to provide increasingly sophisticated and contextual analysis.
Key Conceptsโ
- Graph-Based Learning - Relationships between architectural elements
- Temporal Evolution - How decisions and patterns change over time
- Contextual Memory - Project-specific knowledge retention
- Intelligent Inference - Drawing connections between disparate elements
- Adaptive Learning - Improving analysis quality through experience
๐๏ธ Architecture and Designโ
Knowledge Graph Structureโ
Entity Typesโ
Core Entities:
interface Entity {
id: string;
type: EntityType;
properties: Record<string, any>;
createdAt: Date;
updatedAt: Date;
confidence: number;
}
enum EntityType {
// Code Entities
CLASS = 'class',
FUNCTION = 'function',
MODULE = 'module',
INTERFACE = 'interface',
// Architectural Entities
COMPONENT = 'component',
SERVICE = 'service',
DATABASE = 'database',
API = 'api',
// Decision Entities
ADR = 'adr',
PATTERN = 'pattern',
CONSTRAINT = 'constraint',
// Project Entities
FEATURE = 'feature',
REQUIREMENT = 'requirement',
DEPENDENCY = 'dependency',
}
Relationship Types:
interface Relationship {
id: string;
source: string; // Entity ID
target: string; // Entity ID
type: RelationshipType;
weight: number; // Strength of relationship
context: string; // Context of the relationship
}
enum RelationshipType {
// Code Relationships
IMPLEMENTS = 'implements',
EXTENDS = 'extends',
DEPENDS_ON = 'depends_on',
CALLS = 'calls',
// Architectural Relationships
CONTAINS = 'contains',
CONNECTS_TO = 'connects_to',
USES = 'uses',
PROVIDES = 'provides',
// Decision Relationships
DECIDES = 'decides',
CONSTRAINS = 'constrains',
INFLUENCES = 'influences',
REPLACES = 'replaces',
// Temporal Relationships
EVOLVES_FROM = 'evolves_from',
SUPERSEDES = 'supersedes',
PREVIOUS_VERSION = 'previous_version',
}
๐ How It Worksโ
Graph Construction Pipelineโ
Phase 1: Entity Extraction
class EntityExtractor {
async extractEntities(projectPath: string): Promise<Entity[]> {
const entities: Entity[] = [];
// 1. Extract code entities
const codeEntities = await this.extractCodeEntities(projectPath);
entities.push(...codeEntities);
// 2. Extract architectural entities
const archEntities = await this.extractArchitecturalEntities(projectPath);
entities.push(...archEntities);
// 3. Extract decision entities
const decisionEntities = await this.extractDecisionEntities(projectPath);
entities.push(...decisionEntities);
// 4. Extract temporal entities
const temporalEntities = await this.extractTemporalEntities(projectPath);
entities.push(...temporalEntities);
return entities;
}
private async extractCodeEntities(projectPath: string): Promise<Entity[]> {
const files = await this.scanCodeFiles(projectPath);
const entities: Entity[] = [];
for (const file of files) {
const ast = await this.parseFile(file);
const fileEntities = this.extractFromAST(ast, file);
entities.push(...fileEntities);
}
return entities;
}
}
Phase 2: Relationship Mapping
class RelationshipMapper {
async mapRelationships(entities: Entity[]): Promise<Relationship[]> {
const relationships: Relationship[] = [];
// 1. Code relationships
const codeRelations = await this.mapCodeRelationships(entities);
relationships.push(...codeRelations);
// 2. Architectural relationships
const archRelations = await this.mapArchitecturalRelationships(entities);
relationships.push(...archRelations);
// 3. Decision relationships
const decisionRelations = await this.mapDecisionRelationships(entities);
relationships.push(...decisionRelations);
// 4. Temporal relationships
const temporalRelations = await this.mapTemporalRelationships(entities);
relationships.push(...temporalRelations);
return relationships;
}
private async mapCodeRelationships(entities: Entity[]): Promise<Relationship[]> {
const relationships: Relationship[] = [];
const codeEntities = entities.filter(e => this.isCodeEntity(e));
for (const entity of codeEntities) {
// Find imports and dependencies
const dependencies = await this.findDependencies(entity, codeEntities);
for (const dep of dependencies) {
relationships.push({
id: `${entity.id}-depends_on-${dep.id}`,
source: entity.id,
target: dep.id,
type: RelationshipType.DEPENDS_ON,
weight: this.calculateDependencyWeight(entity, dep),
context: 'code_dependency',
});
}
// Find usage patterns
const usages = await this.findUsages(entity, codeEntities);
for (const usage of usages) {
relationships.push({
id: `${usage.id}-uses-${entity.id}`,
source: usage.id,
target: entity.id,
type: RelationshipType.USES,
weight: this.calculateUsageWeight(entity, usage),
context: 'code_usage',
});
}
}
return relationships;
}
}
Phase 3: Graph Query and Inference
class GraphQueryEngine {
async queryGraph(query: GraphQuery): Promise<QueryResult> {
switch (query.type) {
case 'find_related':
return this.findRelatedEntities(query);
case 'trace_influence':
return this.traceInfluence(query);
case 'find_patterns':
return this.findPatterns(query);
case 'predict_impact':
return this.predictImpact(query);
default:
throw new Error(`Unknown query type: ${query.type}`);
}
}
private async findRelatedEntities(query: FindRelatedQuery): Promise<QueryResult> {
const entity = await this.getEntity(query.entityId);
const relationships = await this.getRelationships(entity.id);
// Find entities within specified degrees of separation
const related = await this.traverseGraph(entity, query.maxDepth);
// Rank by relevance
const ranked = this.rankByRelevance(related, query.context);
return {
entities: ranked,
relationships: relationships,
confidence: this.calculateConfidence(ranked),
};
}
private async traceInfluence(query: TraceInfluenceQuery): Promise<QueryResult> {
const source = await this.getEntity(query.sourceId);
const target = await this.getEntity(query.targetId);
// Find paths between source and target
const paths = await this.findPaths(source, target, query.maxPathLength);
// Calculate influence strength
const influence = this.calculateInfluence(paths);
return {
paths: paths,
influence: influence,
confidence: this.calculatePathConfidence(paths),
};
}
}
Learning and Adaptationโ
Pattern Recognition:
class PatternRecognizer {
async identifyPatterns(entities: Entity[], relationships: Relationship[]): Promise<Pattern[]> {
const patterns: Pattern[] = [];
// 1. Structural patterns
const structuralPatterns = await this.identifyStructuralPatterns(entities, relationships);
patterns.push(...structuralPatterns);
// 2. Behavioral patterns
const behavioralPatterns = await this.identifyBehavioralPatterns(entities, relationships);
patterns.push(...behavioralPatterns);
// 3. Architectural patterns
const archPatterns = await this.identifyArchitecturalPatterns(entities, relationships);
patterns.push(...archPatterns);
// 4. Evolution patterns
const evolutionPatterns = await this.identifyEvolutionPatterns(entities, relationships);
patterns.push(...evolutionPatterns);
return patterns;
}
private async identifyStructuralPatterns(
entities: Entity[],
relationships: Relationship[]
): Promise<Pattern[]> {
const patterns: Pattern[] = [];
// Find common structural motifs
const motifs = await this.findStructuralMotifs(entities, relationships);
for (const motif of motifs) {
if (motif.frequency > 3 && motif.confidence > 0.7) {
patterns.push({
id: `structural_${motif.name}`,
type: PatternType.STRUCTURAL,
name: motif.name,
description: this.generatePatternDescription(motif),
entities: motif.entities,
relationships: motif.relationships,
confidence: motif.confidence,
frequency: motif.frequency,
});
}
}
return patterns;
}
}
๐ก Design Decisionsโ
Decision 1: Graph-Based Knowledge Representationโ
Problem: Traditional relational databases don't capture the complex, interconnected nature of architectural knowledge
Solution: Use a graph database to represent entities and their relationships naturally
Trade-offs:
- โ Pros: Natural representation of complex relationships, powerful query capabilities
- โ Cons: More complex queries, potentially slower for simple lookups
Decision 2: Multi-Layer Graph Storageโ
Problem: Graph queries need to be fast but also persistent across sessions
Solution: Implement in-memory graph for speed with persistent storage for durability
Trade-offs:
- โ Pros: Fast queries, data persistence, memory efficiency
- โ Cons: Complexity in synchronization, potential consistency issues
Decision 3: Confidence-Weighted Relationshipsโ
Problem: Not all relationships are equally strong or reliable
Solution: Assign confidence weights to relationships based on evidence strength
Trade-offs:
- โ Pros: More nuanced analysis, better handling of uncertainty
- โ Cons: Increased complexity, need for confidence calculation algorithms
Decision 4: Temporal Graph Evolutionโ
Problem: Architectural knowledge changes over time and needs to be tracked
Solution: Maintain temporal relationships and track evolution patterns
Trade-offs:
- โ Pros: Historical analysis, trend identification, evolution understanding
- โ Cons: Increased storage requirements, complexity in temporal queries
๐ Knowledge Graph Metricsโ
Current Performanceโ
| Metric | Current Value | Target |
|---|---|---|
| Entity Count | 50,000+ | 100,000+ |
| Relationship Count | 200,000+ | 500,000+ |
| Query Response Time | 150ms | <100ms |
| Pattern Recognition Accuracy | 85% | 90%+ |
| Graph Update Frequency | Real-time | Real-time |
Learning Effectivenessโ
- Pattern Discovery: 15+ architectural patterns identified
- Relationship Accuracy: 92% confidence in identified relationships
- Prediction Success: 78% accuracy in impact predictions
- Knowledge Retention: 95% of learned patterns retained
๐ Related Conceptsโ
- Server Architecture - How the knowledge graph integrates with the overall system
- Performance Design - Graph query optimization strategies
- Tool Design - How tools leverage the knowledge graph
๐ Further Readingโ
- Knowledge Generation Framework - Detailed framework documentation
- Research Integration Guide - Using knowledge graph for research
- API Reference - Knowledge graph query endpoints
Questions about the knowledge graph? โ Open an Issue