Skip to main content

Knowledge Generation Framework Design

Overviewโ€‹

The Knowledge Generation framework implements advanced prompting techniques to generate domain-specific architectural knowledge before making decisions. This enhances the accuracy and context-awareness of all MCP ADR Analysis Server tools while maintaining the 100% prompt-driven architecture.

Core Conceptโ€‹

Knowledge Generation Prompting works by:

  1. Domain Analysis: Identify the architectural domain and context
  2. Knowledge Generation: Generate relevant domain-specific knowledge
  3. Knowledge Integration: Combine generated knowledge with task prompts
  4. Decision Making: Use enhanced prompts for better decision quality

Architecture Integrationโ€‹

Existing Components Integrationโ€‹

  • PromptObject Interface: Knowledge generation returns PromptObject format
  • combinePrompts(): Combines knowledge prompts with task prompts
  • Cache System: Caches generated knowledge for performance
  • Security Validation: Validates generated knowledge content

Framework Componentsโ€‹

Knowledge Generation Framework
โ”œโ”€โ”€ Domain Templates (Web, Mobile, Microservices, etc.)
โ”œโ”€โ”€ Knowledge Generator (Core generation logic)
โ”œโ”€โ”€ Knowledge Cache (Persistent knowledge storage)
โ”œโ”€โ”€ Integration Layer (Tool integration utilities)
โ””โ”€โ”€ Configuration (Settings and customization)

Interface Definitionsโ€‹

Core Knowledge Interfacesโ€‹

export interface DomainKnowledge {
domain: ArchitecturalDomain;
knowledge: KnowledgeItem[];
confidence: number;
timestamp: string;
sources: string[];
metadata: KnowledgeMetadata;
}

export interface KnowledgeItem {
category: KnowledgeCategory;
title: string;
content: string;
relevance: number;
evidence: string[];
tags: string[];
}

export interface KnowledgeGenerationConfig {
domains: ArchitecturalDomain[];
depth: 'basic' | 'intermediate' | 'advanced';
cacheEnabled: boolean;
cacheTTL: number;
securityValidation: boolean;
customTemplates?: DomainTemplate[];
}

export interface KnowledgeGenerationResult {
knowledgePrompt: PromptObject;
enhancedPrompt: PromptObject;
cacheKey: string;
metadata: GenerationMetadata;
}

Domain Categoriesโ€‹

export type ArchitecturalDomain = 
| 'web-applications'
| 'mobile-applications'
| 'microservices'
| 'database-design'
| 'cloud-infrastructure'
| 'devops-cicd'
| 'security-patterns'
| 'performance-optimization'
| 'api-design'
| 'data-architecture';

export type KnowledgeCategory =
| 'best-practices'
| 'design-patterns'
| 'anti-patterns'
| 'technology-specific'
| 'performance-considerations'
| 'security-guidelines'
| 'scalability-patterns'
| 'testing-strategies';

Domain Knowledge Templatesโ€‹

Web Applications Templateโ€‹

const webApplicationsTemplate: DomainTemplate = {
domain: 'web-applications',
categories: [
{
category: 'best-practices',
items: [
'Component-based architecture principles',
'State management patterns (Redux, Zustand, Context)',
'Performance optimization techniques',
'Accessibility (a11y) guidelines',
'SEO optimization strategies'
]
},
{
category: 'design-patterns',
items: [
'Model-View-Controller (MVC)',
'Component composition patterns',
'Higher-Order Components (HOCs)',
'Render props pattern',
'Custom hooks pattern'
]
}
]
};

Microservices Templateโ€‹

const microservicesTemplate: DomainTemplate = {
domain: 'microservices',
categories: [
{
category: 'best-practices',
items: [
'Service decomposition strategies',
'API gateway patterns',
'Service mesh architecture',
'Event-driven communication',
'Distributed data management'
]
},
{
category: 'anti-patterns',
items: [
'Distributed monolith',
'Chatty interfaces',
'Shared databases',
'Synchronous communication overuse'
]
}
]
};

Core Functionsโ€‹

Primary Knowledge Generation Functionโ€‹

export async function generateArchitecturalKnowledge(
context: ArchitecturalContext,
config: KnowledgeGenerationConfig = {}
): Promise<KnowledgeGenerationResult>

Domain Detection Functionโ€‹

export async function detectArchitecturalDomains(
projectContext: ProjectContext
): Promise<ArchitecturalDomain[]>

Knowledge Enhancement Functionโ€‹

export async function enhancePromptWithKnowledge(
originalPrompt: PromptObject,
domains: ArchitecturalDomain[],
config: KnowledgeGenerationConfig = {}
): Promise<PromptObject>

Caching Strategyโ€‹

Cache Key Generationโ€‹

function generateKnowledgeCacheKey(
domains: ArchitecturalDomain[],
context: ArchitecturalContext,
config: KnowledgeGenerationConfig
): string {
return `knowledge:${domains.join('+')}-${hashContext(context)}-${hashConfig(config)}`;
}

Cache TTL Strategyโ€‹

  • Basic Knowledge: 24 hours (stable architectural principles)
  • Technology-Specific: 6 hours (evolving best practices)
  • Project-Specific: 1 hour (context-dependent knowledge)

Security Validationโ€‹

Knowledge Content Validationโ€‹

  1. Source Verification: Ensure knowledge comes from trusted sources
  2. Content Sanitization: Remove potentially harmful content
  3. Relevance Validation: Verify knowledge relevance to context
  4. Quality Assessment: Evaluate knowledge quality and accuracy

Security Checksโ€‹

export interface KnowledgeSecurityCheck {
contentSafety: boolean;
sourceReliability: number;
relevanceScore: number;
qualityScore: number;
warnings: string[];
}

Integration Patternsโ€‹

Tool Integration Exampleโ€‹

// In suggest_adrs tool
const knowledgeResult = await generateArchitecturalKnowledge(
{ domains: ['web-applications', 'api-design'], projectContext },
{ depth: 'intermediate', cacheEnabled: true }
);

const enhancedPrompt = combinePrompts(
knowledgeResult.knowledgePrompt,
originalAdrPrompt
);

Configuration Integrationโ€‹

export interface ToolKnowledgeConfig {
enableKnowledgeGeneration: boolean;
domains: ArchitecturalDomain[];
knowledgeDepth: 'basic' | 'intermediate' | 'advanced';
cacheStrategy: 'aggressive' | 'moderate' | 'minimal';
}

Usage Patternsโ€‹

Pattern 1: Domain-Aware ADR Suggestionsโ€‹

  1. Detect project domains from codebase analysis
  2. Generate domain-specific architectural knowledge
  3. Enhance ADR suggestion prompts with knowledge
  4. Cache knowledge for subsequent suggestions

Pattern 2: Context-Enhanced Analysisโ€‹

  1. Analyze project structure and technologies
  2. Generate relevant architectural knowledge
  3. Combine knowledge with analysis prompts
  4. Provide context-aware recommendations

Pattern 3: Knowledge-Driven Research Questionsโ€‹

  1. Identify knowledge gaps in project context
  2. Generate domain expertise knowledge
  3. Create research questions based on knowledge
  4. Enhance research planning with domain insights

Performance Considerationsโ€‹

Optimization Strategiesโ€‹

  1. Lazy Loading: Load domain templates only when needed
  2. Incremental Generation: Generate knowledge incrementally
  3. Parallel Processing: Generate knowledge for multiple domains in parallel
  4. Smart Caching: Cache at multiple levels (domain, context, config)

Resource Managementโ€‹

  • Memory Usage: Limit concurrent knowledge generation
  • Cache Size: Implement cache size limits and cleanup
  • Generation Time: Set timeouts for knowledge generation
  • Quality vs Speed: Balance knowledge depth with generation time

Future Enhancementsโ€‹

Planned Featuresโ€‹

  1. Custom Domain Templates: User-defined domain knowledge
  2. Knowledge Learning: Learn from successful knowledge applications
  3. Knowledge Validation: Validate knowledge against project outcomes
  4. Knowledge Sharing: Share knowledge across projects and teams

Integration Opportunitiesโ€‹

  1. APE Integration: Optimize knowledge generation prompts
  2. Reflexion Integration: Learn from knowledge effectiveness
  3. External Sources: Integrate with external knowledge bases
  4. Team Knowledge: Incorporate team-specific knowledge

Implementation Roadmapโ€‹

Phase 1: Core Framework (Week 1-2)โ€‹

  • Implement basic knowledge generation
  • Create domain templates
  • Integrate with existing prompt system
  • Add basic caching

Phase 2: Advanced Features (Week 3-4)โ€‹

  • Add security validation
  • Implement configuration system
  • Create tool integration utilities
  • Add performance optimizations

Phase 3: Enhancement & Testing (Week 5-6)โ€‹

  • Comprehensive testing
  • Performance tuning
  • Documentation completion
  • Integration with priority tools

This framework design provides a solid foundation for implementing Knowledge Generation across the MCP ADR Analysis Server while maintaining architectural consistency and security requirements.