Knowledge Generation Framework Design
Overviewโ
The Knowledge Generation framework implements advanced prompting techniques to generate domain-specific architectural knowledge before making decisions. This enhances the accuracy and context-awareness of all MCP ADR Analysis Server tools while maintaining the 100% prompt-driven architecture.
Core Conceptโ
Knowledge Generation Prompting works by:
- Domain Analysis: Identify the architectural domain and context
- Knowledge Generation: Generate relevant domain-specific knowledge
- Knowledge Integration: Combine generated knowledge with task prompts
- Decision Making: Use enhanced prompts for better decision quality
Architecture Integrationโ
Existing Components Integrationโ
- PromptObject Interface: Knowledge generation returns PromptObject format
- combinePrompts(): Combines knowledge prompts with task prompts
- Cache System: Caches generated knowledge for performance
- Security Validation: Validates generated knowledge content
Framework Componentsโ
Knowledge Generation Framework
โโโ Domain Templates (Web, Mobile, Microservices, etc.)
โโโ Knowledge Generator (Core generation logic)
โโโ Knowledge Cache (Persistent knowledge storage)
โโโ Integration Layer (Tool integration utilities)
โโโ Configuration (Settings and customization)
Interface Definitionsโ
Core Knowledge Interfacesโ
export interface DomainKnowledge {
domain: ArchitecturalDomain;
knowledge: KnowledgeItem[];
confidence: number;
timestamp: string;
sources: string[];
metadata: KnowledgeMetadata;
}
export interface KnowledgeItem {
category: KnowledgeCategory;
title: string;
content: string;
relevance: number;
evidence: string[];
tags: string[];
}
export interface KnowledgeGenerationConfig {
domains: ArchitecturalDomain[];
depth: 'basic' | 'intermediate' | 'advanced';
cacheEnabled: boolean;
cacheTTL: number;
securityValidation: boolean;
customTemplates?: DomainTemplate[];
}
export interface KnowledgeGenerationResult {
knowledgePrompt: PromptObject;
enhancedPrompt: PromptObject;
cacheKey: string;
metadata: GenerationMetadata;
}
Domain Categoriesโ
export type ArchitecturalDomain =
| 'web-applications'
| 'mobile-applications'
| 'microservices'
| 'database-design'
| 'cloud-infrastructure'
| 'devops-cicd'
| 'security-patterns'
| 'performance-optimization'
| 'api-design'
| 'data-architecture';
export type KnowledgeCategory =
| 'best-practices'
| 'design-patterns'
| 'anti-patterns'
| 'technology-specific'
| 'performance-considerations'
| 'security-guidelines'
| 'scalability-patterns'
| 'testing-strategies';
Domain Knowledge Templatesโ
Web Applications Templateโ
const webApplicationsTemplate: DomainTemplate = {
domain: 'web-applications',
categories: [
{
category: 'best-practices',
items: [
'Component-based architecture principles',
'State management patterns (Redux, Zustand, Context)',
'Performance optimization techniques',
'Accessibility (a11y) guidelines',
'SEO optimization strategies'
]
},
{
category: 'design-patterns',
items: [
'Model-View-Controller (MVC)',
'Component composition patterns',
'Higher-Order Components (HOCs)',
'Render props pattern',
'Custom hooks pattern'
]
}
]
};
Microservices Templateโ
const microservicesTemplate: DomainTemplate = {
domain: 'microservices',
categories: [
{
category: 'best-practices',
items: [
'Service decomposition strategies',
'API gateway patterns',
'Service mesh architecture',
'Event-driven communication',
'Distributed data management'
]
},
{
category: 'anti-patterns',
items: [
'Distributed monolith',
'Chatty interfaces',
'Shared databases',
'Synchronous communication overuse'
]
}
]
};
Core Functionsโ
Primary Knowledge Generation Functionโ
export async function generateArchitecturalKnowledge(
context: ArchitecturalContext,
config: KnowledgeGenerationConfig = {}
): Promise<KnowledgeGenerationResult>
Domain Detection Functionโ
export async function detectArchitecturalDomains(
projectContext: ProjectContext
): Promise<ArchitecturalDomain[]>
Knowledge Enhancement Functionโ
export async function enhancePromptWithKnowledge(
originalPrompt: PromptObject,
domains: ArchitecturalDomain[],
config: KnowledgeGenerationConfig = {}
): Promise<PromptObject>
Caching Strategyโ
Cache Key Generationโ
function generateKnowledgeCacheKey(
domains: ArchitecturalDomain[],
context: ArchitecturalContext,
config: KnowledgeGenerationConfig
): string {
return `knowledge:${domains.join('+')}-${hashContext(context)}-${hashConfig(config)}`;
}
Cache TTL Strategyโ
- Basic Knowledge: 24 hours (stable architectural principles)
- Technology-Specific: 6 hours (evolving best practices)
- Project-Specific: 1 hour (context-dependent knowledge)
Security Validationโ
Knowledge Content Validationโ
- Source Verification: Ensure knowledge comes from trusted sources
- Content Sanitization: Remove potentially harmful content
- Relevance Validation: Verify knowledge relevance to context
- Quality Assessment: Evaluate knowledge quality and accuracy
Security Checksโ
export interface KnowledgeSecurityCheck {
contentSafety: boolean;
sourceReliability: number;
relevanceScore: number;
qualityScore: number;
warnings: string[];
}
Integration Patternsโ
Tool Integration Exampleโ
// In suggest_adrs tool
const knowledgeResult = await generateArchitecturalKnowledge(
{ domains: ['web-applications', 'api-design'], projectContext },
{ depth: 'intermediate', cacheEnabled: true }
);
const enhancedPrompt = combinePrompts(
knowledgeResult.knowledgePrompt,
originalAdrPrompt
);
Configuration Integrationโ
export interface ToolKnowledgeConfig {
enableKnowledgeGeneration: boolean;
domains: ArchitecturalDomain[];
knowledgeDepth: 'basic' | 'intermediate' | 'advanced';
cacheStrategy: 'aggressive' | 'moderate' | 'minimal';
}
Usage Patternsโ
Pattern 1: Domain-Aware ADR Suggestionsโ
- Detect project domains from codebase analysis
- Generate domain-specific architectural knowledge
- Enhance ADR suggestion prompts with knowledge
- Cache knowledge for subsequent suggestions
Pattern 2: Context-Enhanced Analysisโ
- Analyze project structure and technologies
- Generate relevant architectural knowledge
- Combine knowledge with analysis prompts
- Provide context-aware recommendations
Pattern 3: Knowledge-Driven Research Questionsโ
- Identify knowledge gaps in project context
- Generate domain expertise knowledge
- Create research questions based on knowledge
- Enhance research planning with domain insights
Performance Considerationsโ
Optimization Strategiesโ
- Lazy Loading: Load domain templates only when needed
- Incremental Generation: Generate knowledge incrementally
- Parallel Processing: Generate knowledge for multiple domains in parallel
- Smart Caching: Cache at multiple levels (domain, context, config)
Resource Managementโ
- Memory Usage: Limit concurrent knowledge generation
- Cache Size: Implement cache size limits and cleanup
- Generation Time: Set timeouts for knowledge generation
- Quality vs Speed: Balance knowledge depth with generation time
Future Enhancementsโ
Planned Featuresโ
- Custom Domain Templates: User-defined domain knowledge
- Knowledge Learning: Learn from successful knowledge applications
- Knowledge Validation: Validate knowledge against project outcomes
- Knowledge Sharing: Share knowledge across projects and teams
Integration Opportunitiesโ
- APE Integration: Optimize knowledge generation prompts
- Reflexion Integration: Learn from knowledge effectiveness
- External Sources: Integrate with external knowledge bases
- Team Knowledge: Incorporate team-specific knowledge
Implementation Roadmapโ
Phase 1: Core Framework (Week 1-2)โ
- Implement basic knowledge generation
- Create domain templates
- Integrate with existing prompt system
- Add basic caching
Phase 2: Advanced Features (Week 3-4)โ
- Add security validation
- Implement configuration system
- Create tool integration utilities
- Add performance optimizations
Phase 3: Enhancement & Testing (Week 5-6)โ
- Comprehensive testing
- Performance tuning
- Documentation completion
- Integration with priority tools
This framework design provides a solid foundation for implementing Knowledge Generation across the MCP ADR Analysis Server while maintaining architectural consistency and security requirements.