APE Framework Usage Guide
Overview
The Automatic Prompt Engineer (APE) framework provides intelligent prompt optimization capabilities for MCP ADR Analysis Server tools. This guide demonstrates how to integrate APE optimization into tools and configure optimization parameters.
Quick Start
Basic APE Optimization
typescript
import { optimizePromptWithAPE } from '../utils/ape-framework.js';
// Optimize a prompt for better performance
const optimizationResult = await optimizePromptWithAPE(
originalPrompt,
{
candidateCount: 5,
evaluationCriteria: ['task-completion', 'clarity', 'specificity'],
optimizationRounds: 2,
selectionStrategy: 'multi-criteria'
}
);
// Use the optimized prompt
const enhancedPrompt = optimizationResult.optimizedPrompt;
Tool Integration Example
typescript
// Example: APE-enhanced ADR suggestion tool
export async function generateOptimizedAdrSuggestions(context: any) {
// Step 1: Create base prompt
const basePrompt = createAdrSuggestionPrompt(context);
// Step 2: Apply APE optimization
const apeResult = await optimizePromptWithAPE(
basePrompt,
{
candidateCount: 7,
evaluationCriteria: ['task-completion', 'specificity', 'clarity', 'robustness'],
optimizationRounds: 3,
selectionStrategy: 'multi-criteria',
cacheEnabled: true
}
);
// Step 3: Return optimized prompt for AI execution
return {
content: [{
type: 'text',
text: apeResult.optimizedPrompt.prompt
}],
metadata: {
apeOptimization: {
improvementScore: apeResult.improvementScore,
candidatesEvaluated: apeResult.candidatesEvaluated,
optimizationTime: apeResult.totalOptimizationTime
}
}
};
}
Configuration Options
APE Configuration
typescript
interface APEConfig {
candidateCount: number; // Number of candidates to generate (1-20)
evaluationCriteria: EvaluationCriterion[];
optimizationRounds: number; // Number of optimization iterations (1-10)
selectionStrategy: SelectionStrategy;
cacheEnabled: boolean;
performanceTracking: boolean;
maxOptimizationTime: number; // Maximum time in milliseconds
qualityThreshold: number; // Minimum quality score (0-1)
diversityWeight: number; // Weight for candidate diversity (0-1)
}
Evaluation Criteria Options
typescript
type EvaluationCriterion =
| 'task-completion' // How well the prompt achieves the intended task
| 'clarity' // How clear and unambiguous the prompt is
| 'specificity' // How specific and actionable the prompt is
| 'robustness' // How well the prompt handles edge cases
| 'efficiency' // How concise yet comprehensive the prompt is
| 'context-awareness'; // How well the prompt fits the specific context
Selection Strategy Options
typescript
type SelectionStrategy =
| 'highest-score' // Select candidate with highest overall score
| 'multi-criteria' // Balance multiple evaluation criteria
| 'ensemble' // Combine strengths of multiple candidates
| 'context-aware' // Choose based on context-specific suitability
| 'balanced'; // Balance quality and diversity
Tool-Specific Configurations
ADR Generation Tools
typescript
const adrOptimizationConfig: APEConfig = {
candidateCount: 7,
evaluationCriteria: ['task-completion', 'specificity', 'clarity', 'robustness'],
optimizationRounds: 3,
selectionStrategy: 'multi-criteria',
cacheEnabled: true,
performanceTracking: true,
maxOptimizationTime: 180000, // 3 minutes
qualityThreshold: 0.7,
diversityWeight: 0.3
};
Analysis Tools
typescript
const analysisOptimizationConfig: APEConfig = {
candidateCount: 5,
evaluationCriteria: ['task-completion', 'clarity', 'context-awareness'],
optimizationRounds: 2,
selectionStrategy: 'context-aware',
cacheEnabled: true,
performanceTracking: true,
maxOptimizationTime: 120000, // 2 minutes
qualityThreshold: 0.6,
diversityWeight: 0.4
};
Research Tools
typescript
const researchOptimizationConfig: APEConfig = {
candidateCount: 6,
evaluationCriteria: ['task-completion', 'specificity', 'efficiency'],
optimizationRounds: 2,
selectionStrategy: 'balanced',
cacheEnabled: true,
performanceTracking: true,
maxOptimizationTime: 150000, // 2.5 minutes
qualityThreshold: 0.65,
diversityWeight: 0.35
};
Usage Patterns
Pattern 1: Real-time Optimization
typescript
// For tools that need immediate optimization
const quickConfig: APEConfig = {
candidateCount: 3,
evaluationCriteria: ['task-completion', 'clarity'],
optimizationRounds: 1,
selectionStrategy: 'highest-score',
cacheEnabled: true,
maxOptimizationTime: 60000 // 1 minute
};
Pattern 2: Comprehensive Optimization
typescript
// For tools where quality is more important than speed
const comprehensiveConfig: APEConfig = {
candidateCount: 10,
evaluationCriteria: ['task-completion', 'clarity', 'specificity', 'robustness', 'efficiency'],
optimizationRounds: 5,
selectionStrategy: 'multi-criteria',
cacheEnabled: true,
maxOptimizationTime: 300000 // 5 minutes
};
Pattern 3: Context-Specific Optimization
typescript
// For tools that need context-aware optimization
const contextAwareConfig: APEConfig = {
candidateCount: 6,
evaluationCriteria: ['task-completion', 'context-awareness', 'specificity'],
optimizationRounds: 3,
selectionStrategy: 'context-aware',
cacheEnabled: true,
maxOptimizationTime: 180000 // 3 minutes
};
Performance Considerations
Optimization Time vs Quality Trade-offs
- Quick Optimization (1-2 minutes): 3-5 candidates, 1-2 rounds
- Balanced Optimization (2-3 minutes): 5-7 candidates, 2-3 rounds
- Comprehensive Optimization (3-5 minutes): 7-10 candidates, 3-5 rounds
Caching Strategy
typescript
// Enable caching for frequently used prompts
const cachedConfig: APEConfig = {
cacheEnabled: true,
// Cache TTL is automatically managed based on prompt type
// ADR prompts: 24 hours
// Analysis prompts: 6 hours
// Research prompts: 12 hours
};
Resource Management
typescript
// Configure resource limits
const resourceOptimizedConfig: APEConfig = {
candidateCount: 5,
maxOptimizationTime: 120000, // 2 minutes max
qualityThreshold: 0.6, // Accept good enough results
diversityWeight: 0.3 // Focus more on quality than diversity
};
Monitoring and Feedback
Performance Tracking
typescript
// Enable performance tracking to monitor optimization effectiveness
const trackedConfig: APEConfig = {
performanceTracking: true,
// Automatically collects:
// - Optimization time
// - Improvement scores
// - Success rates
// - Resource usage
};
Accessing Optimization Metrics
typescript
// Get optimization performance metrics
const metrics = await getAPEPerformanceMetrics();
console.log('APE Performance:', {
averageImprovementScore: metrics.averageImprovementScore,
optimizationSuccessRate: metrics.successRate,
averageOptimizationTime: metrics.averageOptimizationTime,
cacheHitRate: metrics.cacheHitRate
});
Error Handling and Fallbacks
Graceful Degradation
typescript
async function optimizePromptSafely(
originalPrompt: PromptObject,
config: APEConfig
): Promise<PromptObject> {
try {
const result = await optimizePromptWithAPE(originalPrompt, config);
return result.optimizedPrompt;
} catch (error) {
console.warn('APE optimization failed, using original prompt:', error);
return originalPrompt; // Fallback to original
}
}
Timeout Handling
typescript
const timeoutSafeConfig: APEConfig = {
maxOptimizationTime: 120000, // 2 minutes
qualityThreshold: 0.5, // Lower threshold for timeout scenarios
// If optimization times out, return best candidate found so far
};
Best Practices
1. Configuration Selection
- High-frequency tools: Use quick optimization with caching
- Critical tools: Use comprehensive optimization
- Context-sensitive tools: Use context-aware selection
2. Evaluation Criteria Selection
- Always include:
task-completion
(core requirement) - For user-facing tools: Add
clarity
andspecificity
- For complex tasks: Add
robustness
andefficiency
- For domain-specific tools: Add
context-awareness
3. Performance Optimization
- Enable caching for repeated optimizations
- Set appropriate time limits based on tool usage patterns
- Monitor optimization metrics to tune configurations
- Use fallback strategies for critical tools
4. Quality Assurance
- Set quality thresholds based on tool requirements
- Monitor improvement scores to validate optimization effectiveness
- Collect user feedback on optimized prompts
- Regularly review and update optimization configurations
Integration Examples
Example 1: ADR Suggestion Tool
typescript
export async function suggestAdrsWithAPE(context: any) {
const basePrompt = createAdrSuggestionPrompt(context);
const apeResult = await optimizePromptWithAPE(basePrompt, {
candidateCount: 6,
evaluationCriteria: ['task-completion', 'specificity', 'clarity'],
optimizationRounds: 2,
selectionStrategy: 'multi-criteria',
cacheEnabled: true,
qualityThreshold: 0.7
});
return {
content: [{ type: 'text', text: apeResult.optimizedPrompt.prompt }],
metadata: { apeOptimization: apeResult.metadata }
};
}
Example 2: Research Question Generation
typescript
export async function generateResearchQuestionsWithAPE(context: any) {
const basePrompt = createResearchQuestionPrompt(context);
const apeResult = await optimizePromptWithAPE(basePrompt, {
candidateCount: 5,
evaluationCriteria: ['task-completion', 'specificity', 'efficiency'],
optimizationRounds: 2,
selectionStrategy: 'balanced',
cacheEnabled: true,
qualityThreshold: 0.65
});
return {
content: [{ type: 'text', text: apeResult.optimizedPrompt.prompt }],
metadata: { apeOptimization: apeResult.metadata }
};
}
This usage guide provides comprehensive guidance for integrating APE optimization into MCP tools while maintaining the 100% prompt-driven architecture and ensuring optimal performance.