Knowledge Generation Framework Design
Overview
The Knowledge Generation framework implements advanced prompting techniques to generate domain-specific architectural knowledge before making decisions. This enhances the accuracy and context-awareness of all MCP ADR Analysis Server tools while maintaining the 100% prompt-driven architecture.
Core Concept
Knowledge Generation Prompting works by:
- Domain Analysis: Identify the architectural domain and context
- Knowledge Generation: Generate relevant domain-specific knowledge
- Knowledge Integration: Combine generated knowledge with task prompts
- Decision Making: Use enhanced prompts for better decision quality
Architecture Integration
Existing Components Integration
- PromptObject Interface: Knowledge generation returns PromptObject format
- combinePrompts(): Combines knowledge prompts with task prompts
- Cache System: Caches generated knowledge for performance
- Security Validation: Validates generated knowledge content
Framework Components
Knowledge Generation Framework
├── Domain Templates (Web, Mobile, Microservices, etc.)
├── Knowledge Generator (Core generation logic)
├── Knowledge Cache (Persistent knowledge storage)
├── Integration Layer (Tool integration utilities)
└── Configuration (Settings and customization)
Interface Definitions
Core Knowledge Interfaces
typescript
export interface DomainKnowledge {
domain: ArchitecturalDomain;
knowledge: KnowledgeItem[];
confidence: number;
timestamp: string;
sources: string[];
metadata: KnowledgeMetadata;
}
export interface KnowledgeItem {
category: KnowledgeCategory;
title: string;
content: string;
relevance: number;
evidence: string[];
tags: string[];
}
export interface KnowledgeGenerationConfig {
domains: ArchitecturalDomain[];
depth: 'basic' | 'intermediate' | 'advanced';
cacheEnabled: boolean;
cacheTTL: number;
securityValidation: boolean;
customTemplates?: DomainTemplate[];
}
export interface KnowledgeGenerationResult {
knowledgePrompt: PromptObject;
enhancedPrompt: PromptObject;
cacheKey: string;
metadata: GenerationMetadata;
}
Domain Categories
typescript
export type ArchitecturalDomain =
| 'web-applications'
| 'mobile-applications'
| 'microservices'
| 'database-design'
| 'cloud-infrastructure'
| 'devops-cicd'
| 'security-patterns'
| 'performance-optimization'
| 'api-design'
| 'data-architecture';
export type KnowledgeCategory =
| 'best-practices'
| 'design-patterns'
| 'anti-patterns'
| 'technology-specific'
| 'performance-considerations'
| 'security-guidelines'
| 'scalability-patterns'
| 'testing-strategies';
Domain Knowledge Templates
Web Applications Template
typescript
const webApplicationsTemplate: DomainTemplate = {
domain: 'web-applications',
categories: [
{
category: 'best-practices',
items: [
'Component-based architecture principles',
'State management patterns (Redux, Zustand, Context)',
'Performance optimization techniques',
'Accessibility (a11y) guidelines',
'SEO optimization strategies'
]
},
{
category: 'design-patterns',
items: [
'Model-View-Controller (MVC)',
'Component composition patterns',
'Higher-Order Components (HOCs)',
'Render props pattern',
'Custom hooks pattern'
]
}
]
};
Microservices Template
typescript
const microservicesTemplate: DomainTemplate = {
domain: 'microservices',
categories: [
{
category: 'best-practices',
items: [
'Service decomposition strategies',
'API gateway patterns',
'Service mesh architecture',
'Event-driven communication',
'Distributed data management'
]
},
{
category: 'anti-patterns',
items: [
'Distributed monolith',
'Chatty interfaces',
'Shared databases',
'Synchronous communication overuse'
]
}
]
};
Core Functions
Primary Knowledge Generation Function
typescript
export async function generateArchitecturalKnowledge(
context: ArchitecturalContext,
config: KnowledgeGenerationConfig = {}
): Promise<KnowledgeGenerationResult>
Domain Detection Function
typescript
export async function detectArchitecturalDomains(
projectContext: ProjectContext
): Promise<ArchitecturalDomain[]>
Knowledge Enhancement Function
typescript
export async function enhancePromptWithKnowledge(
originalPrompt: PromptObject,
domains: ArchitecturalDomain[],
config: KnowledgeGenerationConfig = {}
): Promise<PromptObject>
Caching Strategy
Cache Key Generation
typescript
function generateKnowledgeCacheKey(
domains: ArchitecturalDomain[],
context: ArchitecturalContext,
config: KnowledgeGenerationConfig
): string {
return `knowledge:${domains.join('+')}-${hashContext(context)}-${hashConfig(config)}`;
}
Cache TTL Strategy
- Basic Knowledge: 24 hours (stable architectural principles)
- Technology-Specific: 6 hours (evolving best practices)
- Project-Specific: 1 hour (context-dependent knowledge)
Security Validation
Knowledge Content Validation
- Source Verification: Ensure knowledge comes from trusted sources
- Content Sanitization: Remove potentially harmful content
- Relevance Validation: Verify knowledge relevance to context
- Quality Assessment: Evaluate knowledge quality and accuracy
Security Checks
typescript
export interface KnowledgeSecurityCheck {
contentSafety: boolean;
sourceReliability: number;
relevanceScore: number;
qualityScore: number;
warnings: string[];
}
Integration Patterns
Tool Integration Example
typescript
// In suggest_adrs tool
const knowledgeResult = await generateArchitecturalKnowledge(
{ domains: ['web-applications', 'api-design'], projectContext },
{ depth: 'intermediate', cacheEnabled: true }
);
const enhancedPrompt = combinePrompts(
knowledgeResult.knowledgePrompt,
originalAdrPrompt
);
Configuration Integration
typescript
export interface ToolKnowledgeConfig {
enableKnowledgeGeneration: boolean;
domains: ArchitecturalDomain[];
knowledgeDepth: 'basic' | 'intermediate' | 'advanced';
cacheStrategy: 'aggressive' | 'moderate' | 'minimal';
}
Usage Patterns
Pattern 1: Domain-Aware ADR Suggestions
- Detect project domains from codebase analysis
- Generate domain-specific architectural knowledge
- Enhance ADR suggestion prompts with knowledge
- Cache knowledge for subsequent suggestions
Pattern 2: Context-Enhanced Analysis
- Analyze project structure and technologies
- Generate relevant architectural knowledge
- Combine knowledge with analysis prompts
- Provide context-aware recommendations
Pattern 3: Knowledge-Driven Research Questions
- Identify knowledge gaps in project context
- Generate domain expertise knowledge
- Create research questions based on knowledge
- Enhance research planning with domain insights
Performance Considerations
Optimization Strategies
- Lazy Loading: Load domain templates only when needed
- Incremental Generation: Generate knowledge incrementally
- Parallel Processing: Generate knowledge for multiple domains in parallel
- Smart Caching: Cache at multiple levels (domain, context, config)
Resource Management
- Memory Usage: Limit concurrent knowledge generation
- Cache Size: Implement cache size limits and cleanup
- Generation Time: Set timeouts for knowledge generation
- Quality vs Speed: Balance knowledge depth with generation time
Future Enhancements
Planned Features
- Custom Domain Templates: User-defined domain knowledge
- Knowledge Learning: Learn from successful knowledge applications
- Knowledge Validation: Validate knowledge against project outcomes
- Knowledge Sharing: Share knowledge across projects and teams
Integration Opportunities
- APE Integration: Optimize knowledge generation prompts
- Reflexion Integration: Learn from knowledge effectiveness
- External Sources: Integrate with external knowledge bases
- Team Knowledge: Incorporate team-specific knowledge
Implementation Roadmap
Phase 1: Core Framework (Week 1-2)
- Implement basic knowledge generation
- Create domain templates
- Integrate with existing prompt system
- Add basic caching
Phase 2: Advanced Features (Week 3-4)
- Add security validation
- Implement configuration system
- Create tool integration utilities
- Add performance optimizations
Phase 3: Enhancement & Testing (Week 5-6)
- Comprehensive testing
- Performance tuning
- Documentation completion
- Integration with priority tools
This framework design provides a solid foundation for implementing Knowledge Generation across the MCP ADR Analysis Server while maintaining architectural consistency and security requirements.